Unit 5 Molecular Biology , Sem III

Changes in Chromatin Structure

Histone

Histone modifications

Types of Histone Modifications

Specific modifications (acetylation, methylation, etc):

- ✓ What are the residues/positions which are that are frequently modified
- ✓ Enzymes that add/remove the modification
- ✓ Biological roles

Features of Histone Modifications

Covalently attached groups (usually to histone tails)

Types of Histone Modifications

Table 1. Different Classes of Modifications Identified on Histo	nes
---	-----

Chromatin Modifications	Residues Modified	Functions Regulated
Acetylation	K-ac	Transcription, Repair, Replication, Condensation
Methylation (lysines)	K-me1 K-me2 K-me3	Transcription, Repair
Methylation (arginines)	R-me1 R-me2a R-me2s	Transcription
Phosphorylation	S-ph T-ph	Transcription, Repair, Condensation
Ubiquitylation	K -ub	Transcription, Repair

Acetylation

- Many lysine residues can be acetylated
 - mainly on histone tails (sometimes in core)
- Can be part of large acetylation domains
- Modifying enzymes:
 - often multi-enzyme complexes
 - can modify multiple residues
- Well correlated with transcriptional activation
- Other roles (chromatin assembly, DNA repair, etc.)

Histone Acetyl Transferases (HATs/KATs)

- Two general types:
 - Type B: cytoplasmic (newly synthesized histones) HAT1
 - **Type A**: nuclear (GNAT, MYST HAT superfamilies)

Туре В	Enzymes that Modify Histones	Residues Modified
	Acetyltransferase	
	HAT1	H4 (K5, K12)

HDAC - Histone Deacetylases

HAT - Histone Acetyl Transferase

- amino groups of lysine side chains
- unacetylated histones tend to repress transcription
- acetylated histones tend to activate transcription

Histone Deacetylases (HDACs)

- Multi-enzyme complexes
- Targeted by transcriptional repressors
- Deacetylate histone tails

Acetylation: functions

- Acetylation of histone tails neutralizes some of the positive charge, causing them to relax their grip on the DNA.
- Reduces nucleosome cross-linking the interaction between histones in neighboring nucleosome. (eg. H4 in one nucleosome and H2A-H2B dimer in the next one.
- Also some TFs recognize acetylated histones. eg. TAFII250 has a double bromodomain and recognizes low level acetylated histones. Once bound it is a HAT and increases acetylation.

Histone modifiers

Erasers: enzymes that remove a mark

Lysine Methylation

Lysine Methylation

Many lysine residues can be methylated

- Mainly on histone tails (sometimes in core)
- Can be mono-, di-, or tri-methylated

- Depending on residue and number of methyl groups, can be associated with active or repressive transcription
- Other roles
 - Transcriptional elongation
 - Pericentromeric heterochromatin
 - X chromosome inactivation

Lysine Methyltransferases: KMTs

Enzymes very specific

- Target a certain lysine on a certain histone
- Put on mono, di, and/or tri methyl (me, me2, me3)
- Many contain SET domains (me-transferase)
- HMT (Histone methyl transferases) HDM (Histone demethylases)
- 'Readout' is very specific
 - Ex. H3K4me1 vs. H3K4me3

Effect of histone tail modifications

Serine/Threonine Phosphorylation

- Kinases phosphorylate
- Phosphatases remove

Eg: H3S10P during mitosis, Kinases: Aurora B, Phosphatase: PP1

Roles of Ser/Thr Phosphorylation

Overview

- Covalent and reversible
- Dynamic
- Usually occur on histone tails
- Modifying enzymes:
 - Redundancy: A single position can be modified by multiple different enzymes
 - Specificity: Some enzymes (like HMTs) can target only one residue and some (like HATs) can target many
- Histone PTMs recruit other proteins to DNA via specific domains
 - Bromo (Ac)
 - Chromo/PHD (Me)
 - 14-3-3 (Ph)
- Participate in regulation of many processes
 - transcription
 - DNA repair
 - chromatin assembly
 - long-range packaging (heterochromatin formation, silencing)
- Readout frequently depends on the context